Applications of Algebraic Topology to Compatible Spatial Discretizations
نویسندگان
چکیده
We provide a common framework for compatible discretizations using algebraic topology to guide our analysis. The main concept is the natural inner product on cochains, which induces a combinatorial Hodge theory. The framework comprises of mutually consistent operations of differentiation and integration, has a discrete Stokes theorem, and preserves the invariants of the DeRham cohomology groups. The latter allows for an elementary calculation of the kernel of the discrete Laplacian. Our framework provides an abstraction that includes examples of compatible finite element, finite volume and finite difference methods. We describe how these methods result from the choice of a reconstruction operator and when they are equivalent.
منابع مشابه
Categorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملPrinciples of Mimetic Discretizations of Differential Operators
Compatible discretizations transform partial differential equations to discrete algebraic problems that mimic fundamental properties of the continuum equations. We provide a common framework for mimetic discretizations using algebraic topology to guide our analysis. The framework and all attendant discrete structures are put together by using two basic mappings between differential forms and co...
متن کاملFinite element exterior calculus, homological techniques, and applications
Finite element exterior calculus is an approach to the design and understanding of finite element discretizations for a wide variety of systems of partial differential equations. This approach brings to bear tools from differential geometry, algebraic topology, and homological algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structures which...
متن کاملSTABILIZER TOPOLOGY OF HOOPS
In this paper, we introduce the concepts of right, left and product stabilizers on hoops and study some properties and the relation between them. And we try to find that how they can be equal and investigate that under what condition they can be filter, implicative filter, fantastic and positive implicative filter. Also, we prove that right and product stabilizers are filters and if they are ...
متن کاملInternal Topology on MI-groups
An MI-group is an algebraic structure based on a generalization of the concept of a monoid that satisfies the cancellation laws and is endowed with an invertible anti-automorphism representing inversion. In this paper, a topology is defined on an MI-group $G$ under which $G$ is a topological MI-group. Then we will identify open, discrete and compact MI-subgroups. The connected components of th...
متن کامل